
Exercise 1. LetX1;X2;::: be independent and identically distributed continuous random variables.
We say that a record occurs at time n; n> 0 and has value Xn if Xn>max (X1; � � �; Xn¡1), where
X0�¡1. (a) Let Nn denote the total number of records that have occurred up to (and including)
time n. Compute E[Nn] and Var(Nn).

(b) Let T =min fn:n> 1 and a record occurs at ng. Compute P fT >ng and show that P fT <
1g=1 and E[T ] =1.

(c) Let Ty denote the time of the first record value greater than y. That is,

Ty=min fn:Xn> yg:

Show that Ty is independent of XTy. That is, the time of the first value greater than y is independent
of that value. (It may seem more intuitive if you turn this last statement around.)

Solution 1.

(a):

Denote Yi=
�
1; if record occurs at time i
0; else

.

Since P (Yi=1)=P (Xi>max fX1; .... ; Xi¡1g), then we can have order statistics X(1); .... ; X(i¡1),
which we can consider as a permutation of X1; .... ; Xn.

Hence we have i interval: (¡1; X(1)); [X(1); X(2)); ... ; [X(i¡1);1), and Xi>max fX1; .... ;Xi¡1g if
and only if Xi2 [X(i¡1);1).

Note that the probability Xi falling into each interval is the same, for X(1); .... ; X(i¡1) is a per-
mutation of X1; .... ; Xn.

Thus P (Yi=1)= 1

i
, and Yi are mutually independent.

Then we have

E[Nn] = E

"X
i=1

n

Yi

#

=
X
i=1

n

E[Yi]

=
X
i=1

n

P (Yi=1)

=
X
i=1

n
1
i

and

Var(Nn) =
X
i=1

n

Var(Yi)

=
X
i=1

n
1
i

�
1¡ 1

i

�

(b):

P (T >n)=P (max fX1; .... ; Xng=X1)=P (X(n)=X1)=
1

n
.

P (T <1)= limn!1P (T �n)= limn!1
¡
1¡ 1

n

�
=1.

By layer cake representation, we have E[T ] =
P

i=0
n P (T >n)=

P
i=1
n 1

i
=1.
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(c):

Ty=min fn:Xn> yg=)X1; ::::; XTy¡1� y

On the other hand, we can also easily have X1; .... ; XTy¡1� y=)Ty=min fn:Xn> yg.

Thus Ty2 �(X1; .... ; XTy¡1) which is independent of XTy.

Exercise 2. Let X denote the number of white balls selected when k balls are chosen at random
from an urn containing n white and m black balls. Compute E[X] and Var(X).

Solution 2.

Let Xi denote the ith sampling result without replacement, then Xi=
�
1;white ball
0; black ball

.

Thus we can decomposite X into k parts, that is, X =
P

i=1
k Xi.

Note that P (Xi=1)= n

n+m
.

Then we can have

E[X ] = E

"X
i=1

k

Xi

#

=
X
i=1

k

P (X1=1)

=
X
i=1

k
n

n+m

= kn
n+m

and

Var(X) = E[X2]¡ [E[X ]]2

=
X
i=1

k

E[Xi
2] + 2

X
1�i<j�k

XiXj¡
�

kn

n+m

�
2

=
X
i=1

k

E[Xi] + 2
X

1�i<j�k
P (Xi=Xj=1)¡

�
kn

n+m

�
2

= kn
n+m

+2
X

1�i<j�k
P (Xj=1jXi=1)P (Xi=1)¡

�
kn

n+m

�
2

= kn
n+m

+2 k!
2!(k¡ 2)! �

n¡ 1
n+m¡ 1 �

n
n+m

¡
�

kn
n+m

�
2

= kn(n+m)(n+m¡ 1)+ k(k¡ 1)n(n¡ 1)(n+m)¡ k2n2(n+m¡ 1)
(n+m)2(n+m¡ 1)

= kn(n+m)[(n+m)¡ 1+ (k¡ 1)(n¡ 1)¡ kn] + k2n2

(n+m)2(n+m¡ 1)

= knm(n+m¡ k)
(n+m)2(n+m¡ 1)
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Exercise 3. A round-robin tournament of n contestants is one in which each of the
�
n
2

�
pairs

of contestants plays each other exactly once, with the outcome of any play being that one of the
contestants wins and the other loses. Suppose the players are initially numbered 1; 2; .... ; n. The
permutation i1; � � �; in is called a Hamiltonian permutation if i1 beats i2; i2 beats i3, � � �, and in¡1
beats in. Show that there is an outcome of the round-robin for which the number of Hamiltonians
is at least n!/2n¡1.

Solution 3.

Denote X(i1;:::: ;in)
=
�
1; if (i1; :::: ; in) isHamiltonian
0; else

. Since Hamiltonian permutation exists, then

E

24 X
(i1;i2;:::: in)

isapermutationof(1;::: ;n)

X(i1;:::: ;in)

35 = n!P ((i10 ; ::: ; in0 ) isaHamiltonian permuatation)

= n!/2n¡1

Exercise 4. A fair die is continually rolled until an even number has appeared on 10 distinct rolls.
Let Xi denote the number of rolls that land on side i. Determine

(a) E[X1].

(b) E[X2].

(c) the probability mass function of X1.

(d) the probability mass function of X2.

Solution 4.

(a):

Denote Ij be the number of 1 between (j ¡ 1)th even and j th even.

If we let the expectation conditioning on whether the first appearance of roll is 1 or an even, then
we can have

E[Ij] = E[Ij jone before even]P (one before even)+E[Ij jeven before one]P (even before one)

= E[Ij jone before even]�
1
4
+E[Ij jeven before one]�

3
4

= (E[Ij] + 1)�
1
4
+0

where P (one before even) is given by the following equation:

P (one before even) = P (one before 3 and 5)+P (one after 3 and 5)

= 1
6
+ 2
6
P (one before even)

Thus E[Ij] =
1

3
, then take the sum of j

E[X1] = E

24X
j=1

10

Ij

35
= 10

3
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(b):

Denote Yj be the number of 1 between (j ¡ 1)th even and j th even.

If we let the expectation conditioning on whether the appearance of even number is 2, then we can
have

E[Yj] = E[Yj jeven num is 2]P (even num is 2)+E[Yj jeven num is not 2]P (even num is not 2)

= E[Yj jeven num is 2]�1
3

= 1�1
3

Since even number can only appear once, then E[Yj] =
1

3
. So take the sum of j

E[X2] = E

24X
j=1

10

Yj

35
= 10

3

and we have the final result.

(c):

Since X1=
P

j=1
10

Ij, then P (X1= i)=P (
P

j=1
10

Ij= i).

But note that P (evenbeforeone)+P (onebeforeeven)=1 and Ij2f0;1;2; ....g, then Ij+1�Ge
¡ 3
4

�
.

Therefore
P

j=1
10

Ij+ 10�Nb
¡ 3
4
; 10
�
, then

P (X1= i)=P (X1+ 10= i+ 10)=Ci+9
i

�
3
4

�10� 1
4

�
i

(d):

The similar reason as (c), X2� b
¡
10; 1

3

�
=)P (X2= i)=C10

i
¡ 1
3

�
i
¡ 2
3

�10¡i.

Exercise 5. LetX1; ...Xn be independent and identically distributed continuous random variables
having distribution F . Let Xin denote the ith smallest of X1; ....;Xn and let Fin be its distribution
function. Show that

(a) Fin(x)=F (x)Fi¡1n¡1(x)+F�(x)Fin¡1(x)

(b) Fin¡1(x)=
i

n
Fi+1n(x)+

n¡ i
n

Fin(x)

Solution 5.

(a):

Fin(x)=P (Xin�x)=P (Xin�xjXn�x)P (Xn�x)+P (Xin�xjXn>x)P (Xn>x)
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Since Xin�x() at least we have i randomvariables�x, then conditioning on Xn�x means that
we can have at least i¡ 1 random variables�x.

Therefore, P (Xin�xjXn�x)=P (Xi¡1n¡1�x) and P (Xin�xjXn>x)=P (Xin¡1�x).

Then we can have Fin(x)=F (x)Fi¡1n¡1(x)+F�(x)Fin¡1(x), where F�(x)= 1¡F (x).

(b):

Fin¡1(x)=P (Xin¡1�x)=P (Xin¡1�xjXn�Xin)P (Xn�Xin)+P (Xin¡1�xjXn>Xin)P (Xn>
Xin)

where P (Xn�Xin) is the probability of event thatXn is among the i smallest ofX1; .... ; Xn.

Thus P (Xn�Xin)=
i

n
.

And if Xn�Xin, then at least i+1 random variables �x in X1; .... ; Xn.

Therefore P (Xin¡1�xjXn�Xin)=P (Xi+1n�x), and we can have the final result.

Exercise 6. A coin, which lands on heads with probability p, is continually flipped. Compute the
expected number of flips that are made until a string of r heads in a row is obtained.

Solution 6.

Define Xi=
�
1; the coin lands on head
0; else

, then P (Xi= 1) = p, P (Xi= 0) = 1¡ p and Xi are mutually

independent.

Define N be the number of flips that are made until a string of r heads in a row is obtained, and
define T be the number of head untill a tail lands. Therefore,

E[N jT = k] =
�
E[N ] + k; k � r
r; k > r

Hence by LIE,

E[N ] = E[E[N jT ]]

=
X
k=1

r

(E[N ] + k)P (T = k)+
X

k=r+1

1

rP (T = k)

=
X
k=1

r

(E[N ] + k)(1¡ p)pk¡1+
X

k=r+1

1

r(1¡ p)pk¡1

= (1¡ p)1¡ pr

1¡ p
E[N ] + (1¡ p)

X
k=1

r

kpk¡1+ r(1¡ p) pr

1¡ p

= (1¡ pr)E[N ] + 1¡ pr¡ rpr+ rpr+1

1¡ p
+ rpr¡ rpr+1

1¡ p

= (1¡ pr)E[N ] + 1¡ pr

1¡ p

Therefore, E[N ] = 1¡ pr

(1¡ p)pr
.
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Exercise 7. (A Continuous Random Packing Problem) Consider the interval (0; x) and suppose
that we pack in this interval random unit intervals�whose left-hand points are all uniformly
distributed over (0; x¡ 1)-as follows. Let the first such random interval be I1. If I1; : : : ; Ik have
already been packed in the interval, then the next random unit interval will be packed if it does
not intersect any of the intervals I1; : : : ; Ik, and the interval will be denoted by Ik+1. If it does
intersect any of the intervals I1; : : : , Ik, we disregard it and look at the next random interval The
procedure is continued until there is no more room for additional unit intervals (that is, all the
gaps between packed intervals are smaller than 1). Let N(x) denote the number of unit intervals
packed in [0; x] by this method.

Let M(x)=E[N(x)]:Show that M satisfies
M(x)=0; x < 1;

M(x)= 2
x¡ 1

Z
0

x¡1
M(y) dy+1; x > 1

Solution 7.

M(x)= 0; x< 1 is very easy to be seen, for a length r2 (k; k+1) interval at most has k such unit
intervals.

Let us prove the equality when x> 1. Denote interval I10s left-hand point is y, then

E[N(x)] = [E[N (x)jy]]

=
Z
0

x¡1
[1+N(y)+N(x¡ y¡ 1)] 1

x¡ 1dy

=
x¡y¡1=t

1+ 1
x¡ 1

Z
0

x¡1
N(y)dy+ 1

x¡ 1

Z
x¡1

0

N(t)d(¡t)

= 1+ 2
x¡ 1

Z
0

x¡1
N(y)dy

Exercise 8. Verify the formulas given for the mean and variance of an exponential random
variable.

Solution 8.

Suppose X�Exp(�), then its' pdf is p(x)= 1

�
e
¡ 1
�
x
I(x>0).

Then the moment generating function is M(t)=E[etX] =
R 1

�
e
¡ 1
�
x
I(x>0)dx=

1

1¡�t .

Hence, we can have

M 0(t) = �
(1¡�t)2

M 00(t) = 2�2

(1¡�t)3

Thus E[X] =M 0(0)=�, E[X2] =M 00(0)=2�2=)Var(X)= 2�2¡�2=�2.

Exercise 9. If X1; X2; : : : ; Xn are independent and identically distributed exponential random
variables with parameter �, show that

P
1
nXi has a gamma distribution with parameters (n; �)

That is, show that the density function of
P

1
nXi is given by

f(t)=�¡1e
¡ t

� ( t
�
)n¡1/(n¡ 1)!; t� 0
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Solution 9.

By the property of moment generating function, Mf(t) =
�

1

1¡ �t

�n
. Thus the Laplace transform

is
�

1

1+�t

�n
.

So if we want to caculate what is f , we need a Laplace inverse transform:

L¡1
��

1
1+�t

�n�
= Res

�
est

(1+�s)n
;¡1

�

�
= Res

 
1
�n

est¡ 1
�
+ s
�
n
;¡1

�

!

= 1
(n¡ 1)!

1
�n

dn¡1

dsn¡1
estjs=¡ 1

�

= tn¡1
1
�n
e
¡ s

�
1

(n¡ 1)!

which is just the pdf of Gamma distribution.

Exercise 10. If X and Y are independent exponential random variables with respective means
�1 and �2, compute the distribution of Z=min (X;Y ). What is the conditional distribution of Z
given that Z =X?

Solution 10.

FZ(z)=P (Z � z)=P (min (X; Y )� z)= 1¡P (X >z; Y >z)= 1¡P (X >z)P (Y >z)

and P (X >z)= 1¡FX(z), P (Y >z)=1¡FY (z).

Then FZ(z)= 1¡ (1¡FX(z))(1¡FY (z))= 1¡
�
1¡ e

¡ 1
�1
z
��
1¡ e

¡ 1
�2
z
�

P (Z � z jZ=X)= 1¡P (Z >z jZ =X), where P (Z >z jZ =X)= P (X >z jX �Y )
P (X �Y ) .

And P (X >z jX �Y )=
R
z

1
P (X �Y jX =x)pX(x)dx=

R
z

1
e
¡ 1
�2
x 1

�1
e
¡ 1
�1
x
dx= �2

�1+�2
e
¡
�
1
�1
+

1
�2

�
z

Then we can have P (Z >z jZ=X)= P (X >z jX �Y )
P (X �Y ) =

�2
�1+�2

e
¡
�
1
�1
+

1
�2

�
z

�2
�1+�2

= e
¡
�
1
�1
+

1
�2

�
z
,

where P (X �Y )=
R
0

1R
0

y 1

�1�2
e
¡
�
1
�1
x+

1
�2
y
�
dxdy= �2

�1+�2
.

Exercise 11. If X1 and X2 are independent nonnegative continuous random variables, and their
pdf are strictly increasing, show that

P fX1<X2jmin (X1; X2)= tg= �1(t)
�1(t)+�2(t)

;

where �i(t) is the failure rate function of Xi.

Solution 11.

Since their pdf are sttictly increasing, then P (X1=X2= t)= 0, for some constant t.
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Then

P fX1<X2jmin (X1; X2)= tg=P fX1<X2;min (X1; X2)= tg
P fmin (X1; X2)= tg

= P fX1= t;X2>tg
P fX1= t;X2>tg+P fX2= t;X1>tg

= P fX1= tgP fX2>tg
P fX1= tgP fX2>tg+P fX2= tgP fX1>tg

Here by the definition of failure function, we can have �1(t)=
P (X1= t)

1¡F1(t)
and �2(t)=

P (X2= t)

1¡F2(t)
.

Then P fX1<X2jmin (X1; X2)= tg= �1(t)
�1(t)+�2(t)

.

Exercise 12. Use the Markov inequality to show that e¡n� n!

nn
, for all n� 1.

Solution 12.

Suppose X�Exp(1), then by Markov inequality we can have

P (X >n) = e¡n

= P (Xn>nn)

� E[Xn]
nn

=
R
0

1
xn+1¡1e¡xdx

nn

= ¡(n+1)
nn

= n!
nn

Thus we finish the proof.

Exercise 13. Consider a particle that moves along the set of integers in the following manner.
If it is presently at i then it next moves to i+1 with probability p and to i¡ 1 with probability
1¡ p. Starting at 0 , let � denote the probability that it ever reaches 1.

(a) Argue that

�= p+(1¡ p)�2:

(b) Show that

�=
�
1 if p� 1/2
p/(1¡ p) if p< 1/2

(c) Find the probability that the particle ever reaches n; n> 0.

(d) Suppose that p < 1/2 and also that the particle eventually reaches n; n> 0. If the particle is
presently at i; i<n, and n has not yet been reached, show that the particle will next move to i+1
with probability 1¡ p and to i¡ 1 with probability p. That is, show that

P fnext at i+1j at i and will reach ng=1¡ p

(Note that the roles of p and 1¡ p are interchanged when it is given that n is eventually reached)

Solution 13.

Let i! j be the event that the particle moves from i to j in one step. Let i) j be the event
that the particle ever reaches j starting i. Conditioning on the random variable denoting the first
movements of the particle, then
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(a):

�=P (0) 1)
=P (0! 1)P (1) 1)+P (0!¡1)P (¡1) 1)
=p� 1+ (1¡ p)P (¡1) 1)
=p+(1¡ p)P (¡1) 0; 0) 1)
=p+(1¡ p)P (¡1) 0)P (0) 1)
=p+(1¡ p)[P (0) 1)]2

=p+(1¡ p)�2

(b):

Solve the quadratic equation and have the result.

Note that p

1¡ p
< 1 implies p < 1/2, and SLLN tells us Sn¡!¡1 a.s, if p < 1/2, where Sn=P

i=1
n Xi, and Xi is the move of particle at i step.

Thus

�=
�
1 if p� 1/2
p/(1¡ p) if p< 1/2

(c):

P (0)n) = P (n¡ 1)n)P (n¡ 2)n¡ 1)� � �P (0) 1)
= [P (0) 1)]n

= �n

(d):

P (next at i+1jat i &will reachn) = P (i! i+1ji)n)

= P (i! i+1; i)n)
P (i)n)

= P (i)nji! i+1)P (i! i+1)
P (i)n)

= �n¡i¡1p

�n¡i

= p
p

1¡ p

= 1¡ p

Exercise 14. In Exercise 13, let E[T ] denote the expected time until the particle reaches 1

(a) Show that

E[T ] =
�
1/(2 p¡ 1) if p> 1/2
1 if p� 1/2

(b) Show that, for p> 1/2,

Var(T )= 4 p (1¡ p)
(2 p¡ 1)3
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(c) Find the expected time until the particle reaches n; n> 0.

(d) Find the variance of the time at which the particle reaches n; n> 0

Solution 14.

Let T(i)j) the number of steps to reach j first time starting i. Then we have an apparent arithmetic

like T(¡1)1)=T(¡1)0)+T(0)1) and a distributional identity like T(¡1)0)=
d
T(0)1). We also know

that T(¡1)0) and T(0)1) are independent because of the independence of every transition. That
is, T(¡1)0) and T(0)1) are iid. Using the notation in the book, T �T(0)1),

E[T(¡1)1)] =2E[T ]

Var(T(¡1)1))=2Var(T )

Let the random variable X denote the particle's location after the first move.

(a):

Conditioning on X,

E[T ] =E[E[T jX ]]
=E[T jX =1]P (X =1)+E[T jX =¡1]P (X =¡1)
=1� p+(1+E[T(¡1)1)]) (1¡ p)

=1+2 (1¡ p)E[T ]:

Hence, E[T ]=1 if p�1/2. If we can show that E[T ]<1 when p>1/2, we obtain in this case that

E[T ] = 1
2 p¡ 1 :

Now let's show that E[T ]<1 if p>1/2: Let p(n) denotes the probability that the particle reaches
1 by n-transitions starting 0. Then n should be odd. That is, only p(2n+1) is nonzero. Now we
have an upper bound on this probability:

p(2n+1)�
�2n
n

�
p [p (1¡ p)]n� p

[4 p (1¡ p)]n

�n
p

the last approximation is due to Stirling: n!�nn+1/2e¡n 2�
p

.

Since
P

n=1
1

p
[4 p (1¡ p)]n

�n
p <1, then

P
n=1
1

p(2n+1)<1.

Thus p(2n+1)¡! 0 as n¡!1.

(b):

Similarly as (a)

E[T 2] = E[E[T 2jX ]]
= E[T 2jX =1]P (X =1)+E[T 2jX =¡1]P (X =¡1)
= p� 1+ (1¡ p)E[1+T(¡1)1)]2

= p+(1¡ p)E[1+T(¡1)0)+T(0)1)]2

= p+(1¡ p)fE[1+ 4T +2T 2] + 2(E[T ])2g
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then we can have E[T 2] = 1
2p¡ 1 +

4¡ 4p
(2p¡ 1)2 +

2¡ 2p
(2p¡ 1)3 .

Therefore, Var(T )=E[T 2]¡ (E[T ])2= 4p¡ 4p2
(2p¡ 1)3 =

4p(1¡ p)
(2p¡ 1)3 .

(c):

T(0)n)=T(0)1)+ � � �+T(n¡1)n)=
P

i=1
n Ti where Ti are i.i.d having distribution of T . Hence

E[T(0)n)] =nE[T ]:

(d):

By the same reasoning as in (c), Var(T(0)n))=nVar(T )
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